
Collenda: A Games Development Platform in
reconfigurable environments using FPGA devices.

Gabriel Sá Barreto Alves
Technology Department

State University of Feira de Santana
Feira de Santana, Brazil

bielbarretoalves@gmail.com

Anfranserai Morais Dias
Technology Department

State University of Feira de Santana
Feira de Santana, Brazil

anfranserai@ecomp.uefs.br

João Carlos Nunes Bittencourt
Center of Exact and Technological Sciences
Federal University of Recôncavo da Bahia

Cruz das Almas, Brazil
joaocarlos@ufrb.edu.br

Abstract—In the last years, games has been used for teach
software aspects, for example, programming logic, artificial
intelligence, data structure, and others. This paper presents the
validation of a GPU architecture based on sprites which aims
to teach and integrate hardware and software elements through
game programming in reconfigurable environments using FPGA
devices. For this purpose, the project structure, execution process,
instruction set, and some information about architecture of this
video processor are described. In conclusion, some tests are
described to prove the correct performance of modules that are
essentials to the working of the project.

Index Terms—Games, FPGAs, Hardware, Software

I. INTRODUCTION

The use of FPGA (Field-Programmable Gate Array) as
learning tool has increased significantly within university lab-
oratories, allowing to create playful and interactive activities
through the synthesis of digital circuits. For example, the
creation of games using FPGA. The games are into the
category of activities that provide great learning flexibility
[2]. It helps assimilation of the techniques and approaches
associated with integration between hardware and software
elements [1] [3].

This project is the initial development of a teaching platform
that uses games as the main motivation. Its purpose is to
facilitate the comprehension related to hardware elements, as
memory, registers, and others element of digital circuits, as
well as, programming aspects through games developed with
the platform.

This paper presents the validation of a GPU (Graphics
Processing Unit) architecture based on sprites, that aims to
teach and integrate hardware and software elements, through
games programming in reconfigurable environments using
FPGA devices.

In conclusion, will be shown tests for validating some mod-
ules present in the architecture. Such modules are essentials
for the correct performance of the video processor.

II. RELATED WORK

It’s possible to find many projects related to games and
learning about hardware and software. For example, games
developed using microcontrollers or specific hardware, such
as the FPGAs. The games through microcontrollers are im-
plemented using a programming language, for example, the

C language. The development is done through APIs that help
create and control the game. A example, consists in devices
based on Arduino, as GameBuino [5]. This approach is limited
regarding the design of sprites and animations, requiring the
creation of new hardware using a printed circuit board to help
this activity.

The games developed in FPGA can be created through
hardware description language (HDL) and its structure built
using a synthesis tool, as Intel Quartus Prime. This approach
is limited regarding the difficulty of creating new games,
requiring each game to develop new hardware for animation
and control. Example of projects with this approach can be
found through classic games as Pong [3] and Tetris [4],
implemented using hardware modules developed with an HDL
language.

Comparing these approaches with the architecture proposed
in this paper, the user can integrate the GPU developed with
new hardware modules or use the instruction set through a
programming language. For this reason, the user can use the
high-level approach, as performed in microcontrollers, and the
low-level approach, interconnecting hardware modules.

A similar project, but with a different approach other than
Collenda, is the MiSTer [7]. It consists in a open source
hardware implementation for consoles and old computers. This
project re-implements old machines, such as Arcade, Atari,
and others. MiSTer uses the Terasic DE10-Nano development
board to controls most of the system’s core, and a Linux kernel
in which it allows the emulation of games using the hardware
implemented within the FPGA.

Differently of these projects, the Collenda has the purpose
of creating an environment in which the user will be able
to develop games (as the examples previously mentioned)
through hardware structuring, high level programming or a
combination of both approaches.

III. GPU ARCHITECTURE

This version of the GPU executes a restricted instruction set
that allows initially to move and controls sprites on a VGA
monitor with resolution of 640x480 pixels.

The GPU architecture can be integrate with others elements
of hardware, and its instructions are received through of 2 data
buses (dataA and dataB), according to Figure 1. This structure



is used because the first instruction developed needs more
than 32 bits, and as Collenda was designed to be integrated
with Altera Nios II processor, the same 32-bit structure was
adopted. The instruction fields need to be sent at the same time
for decoding, for this reason, it was necessary to insert these
two input buses. The GPU also has an output bus that consist
in the signals to the VGA monitor. Figure 1 shows the current
version of the GPU architecture that has been implemented.

Fig. 1. Current Version of GPU’s Architecture.

The Control Unit consists of a State Machine responsible
for managing the reading, decode and execution process of in-
structions. The Registers are responsible for storing temporary
information (coordinates, memory offset, and an activation
bit) associated with sprites. These information are used to
draw each sprite on the screen. The Drawing Module is
responsible for managing the draw pixel process of the sprites
and background color on the VGA monitor screen. The VGA
Controller manages the monitor signals. This project has used
a resolution of 640x480 pixels that is obtained with a clock
frequency of 25Mhz. The Sprite Memory stores the bitmap
for each sprite. In this version, the Sprite Memory consists in
16.384 words of 9-bits, 3 bits for each RGB component, and
its memory positions are filled in synthesis time. Since the
sprites size used are 20x20, each sprite will take 400 memory
positions. It’s possible to store 40 different sprites.

A. Instruction Set
The GPU has the following machine instructions in its

current version:
Define Sprite (DS): This instruction setups the x and y

sprite coordinates. In this instruction, the offset has 9-bits

and will be used by the GPU to calculate the initial memory
address of the bitmap that contains the colors for each sprite
pixel. The instruction has 2 fields of 10-bits that inform the
sprite’s coordinates on the screen. Also, in this instruction,
exists a bit confirming whether the sprite is activated or not,
in other words, if it should be drawn at the moment. This
bit is marked as sp[29] in Figure 2. These information are
received through a 32-bit data bus, identified as dataB, in
Figure 2. The dataA, carries the instructions operation code
(opcode) and the registers addresses, as depicted in Figure 2.
The information sent though the dataB input is stored into the
Registers, according to the address carried in the instruction.

Fig. 2. Format of the Define Sprite Instruction.

Writing in the Sprite Memory (WSM): This instruction store
or modify the content present in Sprite Memory, according to
the address carried in the instruction. Its possible to change
the background color of the screen using this instruction. The
operation code (opcode) and the memory address are received
through 32-bit input bus, identified as dataA (Figure 3). In the
dataB, the R, G, and B signals are the RGB components for
each pixel on the screen (Figure 3). The last memory address
corresponds to the background colors of the VGA monitor.

Fig. 3. Format of the Memory Written Instruction.

B. Draw Pixel Process
The draw pixel process is the method used to draw sprites

and background on the screen. This step are managed by the
Drawing Module. It works together with other modules, such
as the Registers for reading data for each sprite, the VGA
Controller that informs the current x and y coordinates of the
monitor, the active area signal [6], and the Sprite Memory.

The information on a VGA monitor is displayed horizon-
tally, moving in the “forward” direction (left to right and top
to bottom), for this reason, the sprites are drawn line by line.
Every time the VGA Controller begins the addressable video
area (active area) available to draw pixels, the Drawing Module
starts its processing.

When a sprite is detected, the specific line of the sprite
is drawn according to the current coordinates of the monitor



and the memory addresses that are calculated through the
information stored in Registers. For each pixel, a new memory
address is calculated. These addresses are used to access the
bitmap of the sprites on the Sprite Memory. To use a sprite,
it’s necessary to select which one to use and store the sprite’s
data within the Registers. The Registers has 32 registers of
32-bits to store the information of each one. Figure 4 presents
the execution flow of the Drawing Module.

The VGA Controller has two counters. The horizontal to
count pixels in each line and another (vertical counter) to count
lines in a frame. First, it’s verified whether these counters
are in the active area according to the signal sent by VGA
Controller. When the monitor is in the active area, the current
x and y coordinates provided also by this controller are sent
for comparison between the coordinates of all sprites that have
been stored in the Registers.

This comparison allows you to check whether the current
coordinate belongs to a sprite. The result defines whether the
sprite must be drawn. Pixels that are outside to a sprite belongs
to background.

Fig. 4. Execution flow of the Drawing Module.

IV. RESULTS

This section aims to include the tests that were carried
out to validate the operation of modules present in GPU’s
architecture, as the Control Unit, Instruction Decoder and the
Drawing Module. The correct operation ensures that GPU
works as expected.

A. Instruction Decoder:

The following test aims to validate the Instruction Decoder
through the insertion of data in the input buses (dataA and
dataB) and check the answer produced in the output signals
after the processing.

For the test, it was used two instructions in the simulation.
The first simulates the receipt of an instruction to write in
the Sprite Memory, and the second, an instruction to set up

information of a sprite. After processing, intends to observe
the operation code, address, and content to be store. In Figure
5, the signal lines and buses are counts from top to bottom.

According to Figure 5, it’s possible to note that in the first
rising edge of the signal clk en (line 1) the insertion of data
in dataA (line 3) and dataB (line 4) buses is done. However,
before this first edge, there wasn’t valid data on the buses and
the new instruction signal (line 2) was at a high logic level,
so that, no instruction is decoded. This ensures a default value
on all output buses and nothing will be executed by the GPU.

In the second rising edge of the clk en (at 30ns), the
first instruction were processed and the output is specified as
expected. Line 5, present the opcode value, the line 6 present
the address that was received, and the line 7 present the content
to be store in the Sprite Memory.

See that, in this new pulse, the new instruction signal is
placed again in high logic level and default value is generated
in the next rising edge.

At 50ns, in the third rising edge, the second instruction is
inserted. The new instruction signal is disabled allowing for
new instructions to be decoded, and the outputs are exposed
on the fourth rising edge at 70ns generating the correct output
as expected.

Fig. 5. Instruction Decoder Simulation

B. Control Unit:

This test aims to ensure the state transitions are working
as expected so that everything is defined at the correct time.
The Control Unit works with a frequency of f = 100Mhz (T =
10ns). In Figure 6, the signal lines and buses are counts from
top to bottom.

For the Control Unit validation was specified an inputs
sequence that corresponds to its input buses, as shown in
Figure 6:

• Line 3 - opcode: Identification of the instruction to be
executed.

• Line 4 - printtingScreen: It informs if the screen is being
drawing or not.

• Line 5 - doneInst: Execution status of an instruction.
• Line 6 - fifo empty: Status of the instruction queue.
The tests were based on the state transition between the

writing instructions in the Sprite Memory and the Registers.
The output buses were not considered to minimize the com-
plexity of this analysis.

In Figure 6, from 25ns to 105ns, the execution process of
the instructions is carried out. When the doneInst signal is



placed at the high logic level, the unit returns to the initial
state. It represents that the instruction finished its execution,
thus, it restarting the reading process and executing a new
instruction.

Fig. 6. Control Unit Simulation

From of 105ns the reading process of a new instruction
is initiated. The printtingScreen shows that new processing
for the screen has started. The Control Unit is redirected and
keeps waiting until the screen is drawn. Consequently, halting
the execution of new instructions in this period, since, the
Drawing Module uses the data from the Sprite Memory and
the Registers. Each instruction is executed with 4 clock pulses.
Within this time interval, a new instruction is read, decoded
and executed.

C. Drawing Module:

This test aims to verify if the memory addresses are been
calculated correctly or not, by the Drawing Module. The test
was based on the data insertion in the input buses to simulate
the execution process of the module. Also, in Figure 7, the
signal lines and buses are counts from top to bottom.

It’s possible to analyze, in Figure 7, after the Drawing
Module detects the x and y coordinate values (line 6 and 7) and
the sprite on signal (line 9) is set to a high logic level, it starts
the calculating process for the memory addresses in order to
access the color bits of each sprite’s pixel detected. Note that,
the area for drawing pixels on the monitor is flagged by the
active area input signal (line 5). Consequently, this process
only starts when it’s at the high logic level.

Fig. 7. Drawing Module Simulation.

The addresses are generated at each falling edge of clk pixel
(line 2) with a period of T = 40ns and frequency f = 25Mhz, in
accordance with the operation of the VGA Controller. At each
rising edge of the clk pixel, a new coordinate is generated,

and in the falling edge, if a sprite has been detected, the
corresponding memory address is calculated. As the sprites
have a default size of 20x20 pixels, in each sprite line, 20
new addresses are calculated for every sprite detected. The
addresses are generated according to the memory offset for
each sprite.

V. CONCLUSION

This paper presented the architecture, instruction set, and
validation of a GPU based on sprites that allow move and
controls elements on a VGA monitor with resolution of
640×480 pixels. This project has been proven to be a viable
solution to games development and the building a teaching
platform using games as the main motivation.

This project is still under development, with some other
steps to be improved and validated, such as its integration
with NIOS II processor. This will allow a developer to use
Collenda to program a game using the C language. We also
intend to develop improvements in the sprites storage, in
order to provide better flexibility to the programmer, and the
development of input interfaces that allow player interaction
with games.

REFERENCES

[1] Sanchez-Elez, M., and S. Roman. ”Learning Hardware Design by Im-
plementing Student’s Video-Game on a FPGA.” Frontiers in Education:
Computer Science and Computer Engineering (2015): 24-30.

[2] Squire, Kurt. ”Video games and learning.” Teaching and participatory
culture in the digital age (2011).

[3] R. Szabó and A. Gontean, ”Pong game on FPGA with CRT or LCD
display and push button controls,” 2014 Federated Conference on
Computer Science and Information Systems, 2014, pp. 729-734, doi:
10.15439/2014F181.

[4] K. Liu, Y. Yang and Y. Zhu, ”Tetris game design based on the
FPGA,” 2012 2nd International Conference on Consumer Electronics,
Communications and Networks (CECNet), 2012, pp. 2925-2928, doi:
10.1109/CECNet.2012.6201435.

[5] GAMEBUINO. GameBuino. Available in: ”https://gamebuino.com/”.
Accessed in: March 26th 2021

[6] Santos, Italo S., Joao Carlos N. Bittencourt, and Anfranserai M. Dias.
”Desenvolvimento de um Jogo de Corrida em FPGA.”

[7] MiSTer. Available in: ”https://github.com/MiSTer-
devel/Main MiSTer/wiki”. Accessed in: May 25th 2021


